cs.AI updates on arXiv.org 09月04日
S2M2ECG:心血管疾病诊断的SSM架构
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为S2M2ECG的SSM架构,用于心血管疾病诊断,该架构通过三级融合机制优化了ECG信号的多源特征融合,实现了高性能、低复杂度的心血管疾病诊断。

arXiv:2509.03066v1 Announce Type: cross Abstract: As one of the most effective methods for cardiovascular disease (CVD) diagnosis, multi-lead Electrocardiogram (ECG) signals present a characteristic multi-sensor information fusion challenge that has been continuously researched in deep learning domains. Despite the numerous algorithms proposed with different DL architectures, maintaining a balance among performance, computational complexity, and multi-source ECG feature fusion remains challenging. Recently, state space models (SSMs), particularly Mamba, have demonstrated remarkable effectiveness across various fields. Their inherent design for high-efficiency computation and linear complexity makes them particularly suitable for low-dimensional data like ECGs. This work proposes S2M2ECG, an SSM architecture featuring three-level fusion mechanisms: (1) Spatio-temporal bi-directional SSMs with segment tokenization for low-level signal fusion, (2) Intra-lead temporal information fusion with bi-directional scanning to enhance recognition accuracy in both forward and backward directions, (3) Cross-lead feature interaction modules for spatial information fusion. To fully leverage the ECG-specific multi-lead mechanisms inherent in ECG signals, a multi-branch design and lead fusion modules are incorporated, enabling individual analysis of each lead while ensuring seamless integration with others. Experimental results reveal that S2M2ECG achieves superior performance in the rhythmic, morphological, and clinical scenarios. Moreover, its lightweight architecture ensures it has nearly the fewest parameters among existing models, making it highly suitable for efficient inference and convenient deployment. Collectively, S2M2ECG offers a promising alternative that strikes an excellent balance among performance, computational complexity, and ECG-specific characteristics, paving the way for high-performance, lightweight computations in CVD diagnosis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

S2M2ECG SSM 心血管疾病诊断 ECG信号 特征融合
相关文章