cs.AI updates on arXiv.org 09月04日
DrDiff:高效长文生成框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DrDiff,一种通过三种核心技术解决长文生成效率与质量平衡问题的框架。通过动态专家调度、层次稀疏注意力和软吸收引导优化,显著提高生成速度,在多个长文生成基准测试中优于现有方法。

arXiv:2509.02785v1 Announce Type: cross Abstract: This paper introduces DrDiff, a novel framework for long-text generation that overcomes the efficiency-quality trade-off through three core technologies. First, we design a dynamic expert scheduling mechanism that intelligently allocates computational resources during the diffusion process based on text complexity, enabling more efficient handling of text generation tasks of varying difficulty. Second, we introduce a Hierarchical Sparse Attention (HSA) mechanism that adaptively adjusts attention patterns according to a variety of input lengths, reducing computational complexity from O($n^2$) to O($n$) while maintaining model performance. Finally, we propose a soft absorption guidance optimization strategy that combines with DPM-solver++ to reduce diffusion steps, significantly improving generation speed. Comprehensive experiments on various long-text generation benchmarks demonstrate the superiority of our DrDiff over the existing SOTA methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

长文生成 DrDiff 效率优化 模型性能 人工智能
相关文章