cs.AI updates on arXiv.org 09月04日
病理模型辅助癌细胞分类
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用预训练的病理学基础模型(PFMs)进行癌细胞有丝分裂形态分类,通过低秩自适应进行参数高效微调,采用鱼眼变换和傅里叶域自适应技术强化有丝分裂识别,最终通过集成多个PFMs实现高平衡准确率。

arXiv:2509.02591v1 Announce Type: cross Abstract: Mitotic figures are classified into typical and atypical variants, with atypical counts correlating strongly with tumor aggressiveness. Accurate differentiation is therefore essential for patient prognostication and resource allocation, yet remains challenging even for expert pathologists. Here, we leveraged Pathology Foundation Models (PFMs) pre-trained on large histopathology datasets and applied parameter-efficient fine-tuning via low-rank adaptation. During training, we employ a fisheye transform to emphasize mitoses and Fourier Domain Adaptation using ImageNet target images. Finally, we ensembled multiple PFMs to integrate complementary morphological insights, achieving a high balanced accuracy on the Preliminary Evaluation Phase dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

病理模型 癌细胞分类 有丝分裂形态
相关文章