cs.AI updates on arXiv.org 09月04日
EfficientViT-L2在MIDOG 2025挑战赛中提升非典型有丝分裂分类
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文使用EfficientViT-L2模型在MIDOG 2025挑战赛中,针对非典型与正常有丝分裂进行分类,通过统一数据集和交叉验证,实现了在多个指标上的高平衡准确率。

arXiv:2509.02589v1 Announce Type: cross Abstract: We tackle atypical versus normal mitosis classification in the MIDOG 2025 challenge using EfficientViT-L2, a hybrid CNN--ViT architecture optimized for accuracy and efficiency. A unified dataset of 13,938 nuclei from seven cancer types (MIDOG++ and AMi-Br) was used, with atypical mitoses comprising ~15. To assess domain generalization, we applied leave-one-cancer-type-out cross-validation with 5-fold ensembles, using stain-deconvolution for image augmentation. For challenge submissions, we trained an ensemble with the same 5-fold split but on all cancer types. In the preliminary evaluation phase, this model achieved balanced accuracy of 0.859, ROC AUC of 0.942, and raw accuracy of 0.85, demonstrating competitive and well-balanced performance across metrics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EfficientViT-L2 有丝分裂分类 MIDOG 2025 交叉验证
相关文章