cs.AI updates on arXiv.org 09月04日
MitoDetect++:病理图像中细胞分裂检测与分类新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MitoDetect++的深度学习框架,用于病理图像中细胞分裂的检测与异常分类。通过结合U-Net架构和EfficientNetV2-L骨干网络,以及使用LoRA进行微调,该方法在MIDOG 2025挑战赛中表现出色,展示了其在临床应用中的潜力和可扩展性。

arXiv:2509.02586v1 Announce Type: cross Abstract: Automated detection and classification of mitotic figures especially distinguishing atypical from normal remain critical challenges in computational pathology. We present MitoDetect++, a unified deep learning pipeline designed for the MIDOG 2025 challenge, addressing both mitosis detection and atypical mitosis classification. For detection (Track 1), we employ a U-Net-based encoder-decoder architecture with EfficientNetV2-L as the backbone, enhanced with attention modules, and trained via combined segmentation losses. For classification (Track 2), we leverage the Virchow2 vision transformer, fine-tuned efficiently using Low-Rank Adaptation (LoRA) to minimize resource consumption. To improve generalization and mitigate domain shifts, we integrate strong augmentations, focal loss, and group-aware stratified 5-fold cross-validation. At inference, we deploy test-time augmentation (TTA) to boost robustness. Our method achieves a balanced accuracy of 0.892 across validation domains, highlighting its clinical applicability and scalability across tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MitoDetect++ 病理图像 细胞分裂检测 深度学习 分类
相关文章