cs.AI updates on arXiv.org 09月03日
SPGrasp:动态物体实时抓取合成新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SPGrasp框架,结合时空上下文与用户提示,实现动态物体实时抓取合成,达到低延迟交互。在OCID和 Jacquard数据集上,抓取准确率分别达到90.6%和93.8%,在GraspNet-1Billion数据集上,抓取准确率达到92.0%,交互抓取成功率高达94.8%。

arXiv:2508.20547v2 Announce Type: replace-cross Abstract: Real-time interactive grasp synthesis for dynamic objects remains challenging as existing methods fail to achieve low-latency inference while maintaining promptability. To bridge this gap, we propose SPGrasp (spatiotemporal prompt-driven dynamic grasp synthesis), a novel framework extending segment anything model v2 (SAMv2) for video stream grasp estimation. Our core innovation integrates user prompts with spatiotemporal context, enabling real-time interaction with end-to-end latency as low as 59 ms while ensuring temporal consistency for dynamic objects. In benchmark evaluations, SPGrasp achieves instance-level grasp accuracies of 90.6% on OCID and 93.8% on Jacquard. On the challenging GraspNet-1Billion dataset under continuous tracking, SPGrasp achieves 92.0% accuracy with 73.1 ms per-frame latency, representing a 58.5% reduction compared to the prior state-of-the-art promptable method RoG-SAM while maintaining competitive accuracy. Real-world experiments involving 13 moving objects demonstrate a 94.8% success rate in interactive grasping scenarios. These results confirm SPGrasp effectively resolves the latency-interactivity trade-off in dynamic grasp synthesis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SPGrasp 动态物体 实时抓取 交互式合成
相关文章