cs.AI updates on arXiv.org 09月03日
LLMs在动态金融环境中的交易性能研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一个虚拟零和股票市场——Agent Trading Arena,用于LLMs在动态金融环境中的交易性能研究。实验表明,LLMs在处理图表数据时表现优于文本数据,并通过引入反思模块提升了交易性能。

arXiv:2502.17967v2 Announce Type: replace-cross Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in natural language tasks, yet their performance in dynamic, real-world financial environments remains underexplored. Existing approaches are limited to historical backtesting, where trading actions cannot influence market prices and agents train only on static data. To address this limitation, we present the Agent Trading Arena, a virtual zero-sum stock market in which LLM-based agents engage in competitive multi-agent trading and directly impact price dynamics. By simulating realistic bid-ask interactions, our platform enables training in scenarios that closely mirror live markets, thereby narrowing the gap between training and evaluation. Experiments reveal that LLMs struggle with numerical reasoning when given plain-text data, often overfitting to local patterns and recent values. In contrast, chart-based visualizations significantly enhance both numerical reasoning and trading performance. Furthermore, incorporating a reflection module yields additional improvements, especially with visual inputs. Evaluations on NASDAQ and CSI datasets demonstrate the superiority of our method, particularly under high volatility. All code and data are available at https://github.com/wekjsdvnm/Agent-Trading-Arena.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 金融环境 交易性能 图表数据 反思模块
相关文章