cs.AI updates on arXiv.org 09月03日
神经AMP:个性化助听器放大新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出NeuroAMP,一种用于助听器个性化放大的深度神经网络。通过结合频谱特征和听者听力图,实现助听器放大过程的优化,并引入降噪功能。实验结果表明,NeuroAMP在多个语音和音乐数据集上均取得了优异性能。

arXiv:2502.10822v2 Announce Type: replace-cross Abstract: The prevalence of hearing aids is increasing. However, optimizing the amplification processes of hearing aids remains challenging due to the complexity of integrating multiple modular components in traditional methods. To address this challenge, we present NeuroAMP, a novel deep neural network designed for end-to-end, personalized amplification in hearing aids. NeuroAMP leverages both spectral features and the listener's audiogram as inputs, and we investigate four architectures: Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Convolutional Recurrent Neural Network (CRNN), and Transformer. We also introduce Denoising NeuroAMP, an extension that integrates noise reduction along with amplification capabilities for improved performance in real-world scenarios. To enhance generalization, a comprehensive data augmentation strategy was employed during training on diverse speech (TIMIT and TMHINT) and music (Cadenza Challenge MUSIC) datasets. Evaluation using the Hearing Aid Speech Perception Index (HASPI), Hearing Aid Speech Quality Index (HASQI), and Hearing Aid Audio Quality Index (HAAQI) demonstrates that the Transformer architecture within NeuroAMP achieves the best performance, with SRCC scores of 0.9927 (HASQI) and 0.9905 (HASPI) on TIMIT, and 0.9738 (HAAQI) on the Cadenza Challenge MUSIC dataset. Notably, our data augmentation strategy maintains high performance on unseen datasets (e.g., VCTK, MUSDB18-HQ). Furthermore, Denoising NeuroAMP outperforms both the conventional NAL-R+WDRC approach and a two-stage baseline on the VoiceBank+DEMAND dataset, achieving a 10% improvement in both HASPI (0.90) and HASQI (0.59) scores. These results highlight the potential of NeuroAMP and Denoising NeuroAMP to deliver notable improvements in personalized hearing aid amplification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

助听器 个性化放大 深度学习 降噪
相关文章