cs.AI updates on arXiv.org 09月03日
基于LLM的AQM-LLM网络流量管理优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于大型语言模型(LLM)的AQM-LLM,通过少量样本学习、上下文理解和模式识别,优化网络流量管理,降低工程难度,提升队列管理效率。

arXiv:2501.16734v3 Announce Type: replace-cross Abstract: The growing complexity of network traffic and demand for ultra-low latency communication require smarter packet traffic management. Existing Deep Learning-based queuing approaches struggle with dynamic network scenarios and demand high engineering effort. We propose AQM-LLM, distilling Large Language Models (LLMs) with few-shot learning, contextual understanding, and pattern recognition to improve Active Queue Management (AQM) [RFC 9330] with minimal manual effort. We consider a specific case where AQM is Low Latency, Low Loss, and Scalable Throughput (L4S) and our design of AQM-LLM builds on speculative decoding and reinforcement-based distilling of LLM by tackling congestion prevention in the L4S architecture using Explicit Congestion Notification (ECN) [RFC 9331] and periodic packet dropping. We develop a new open-source experimental platform by executing L4S-AQM on FreeBSD-14, providing interoperable modules to support LLM integration and facilitate IETF recognition through wider testing. Our extensive evaluations show L4S-LLM enhances queue management, prevents congestion, reduces latency, and boosts network performance, showcasing LLMs' adaptability and efficiency in uplifting AQM systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

网络流量管理 大型语言模型 AQM-LLM 队列管理 网络性能
相关文章