cs.AI updates on arXiv.org 09月03日
LLM模拟亲子互动效果评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLM)在模拟早期儿童与成人互动中的表现,发现LLM在词汇和话语层面上能近似模拟亲子对话,但在话语模式和多样性上与人类存在差距,旨在为LLM在儿童应用领域开发全面基准。

arXiv:2412.09318v3 Announce Type: replace-cross Abstract: LLMs can generate human-like dialogues, yet their ability to simulate early child-adult interactions remains largely unexplored. In this paper, we examined how effectively LLMs can capture the distinctive features of child-caregiver language in interaction, using both static and interactive benchmarking methods. We found that state-of-the-art LLMs like Llama 3 and GPT-4o can approximate child-caregiver dialogues at the word and utterance level, but they struggle to reproduce the child and caregiver's discursive patterns, exaggerate alignment, and fail to reach the level of diversity shown by humans. The broader goal of this work is to initiate the development of a comprehensive benchmark for LLMs in child-oriented applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 亲子互动 语言模型 儿童应用 基准测试
相关文章