cs.AI updates on arXiv.org 09月03日
图神经网络解析复杂动态系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用图神经网络学习复杂动态系统的相互作用规则和潜在异质性,通过模拟实验验证了方法的有效性,并展望其应用于揭示自然现象中的支配规则。

arXiv:2407.19160v2 Announce Type: replace-cross Abstract: Natural physical, chemical, and biological dynamical systems are often complex, with heterogeneous components interacting in diverse ways. We show how simple graph neural networks can be designed to jointly learn the interaction rules and the latent heterogeneity from observable dynamics. The learned latent heterogeneity and dynamics can be used to virtually decompose the complex system which is necessary to infer and parameterize the underlying governing equations. We tested the approach with simulation experiments of interacting moving particles, vector fields, and signaling networks. While our current aim is to better understand and validate the approach with simulated data, we anticipate it to become a generally applicable tool to uncover the governing rules underlying complex dynamics observed in nature.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图神经网络 复杂系统 动态系统 相互作用 自然现象
相关文章