cs.AI updates on arXiv.org 09月03日
视觉数据叙事生成方法综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了视觉数据叙事生成的方法,包括图像和视频描述、视觉问答等任务,分析了主要数据集和评估指标,并提出了对现有方法的批判性观点。

arXiv:2406.02748v2 Announce Type: replace-cross Abstract: Creating engaging narratives from visual data is crucial for automated digital media consumption, assistive technologies, and interactive entertainment. This survey covers methodologies used in the generation of these narratives, focusing on their principles, strengths, and limitations. The survey also covers tasks related to automatic story generation, such as image and video captioning, and visual question answering, as well as story generation without visual inputs. These tasks share common challenges with visual story generation and have served as inspiration for the techniques used in the field. We analyze the main datasets and evaluation metrics, providing a critical perspective on their limitations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉数据 叙事生成 自动媒体消费 评估指标
相关文章