cs.AI updates on arXiv.org 09月03日
GeoHG:区域社会经济指标推断新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GeoHG,一种基于异构图的空间感知社会经济指标推断方法,用于从有限区域样本推断全球社会经济指标。GeoHG通过非连续推理,解决了传统空间插值方法在区域空间复杂变化处理上的不足,实验表明GeoHG在数据稀缺情况下表现优异。

arXiv:2405.14135v4 Announce Type: replace-cross Abstract: Regional socioeconomic indicators are critical across various domains, yet their acquisition can be costly. Inferring global socioeconomic indicators from a limited number of regional samples is essential for enhancing management and sustainability in urban areas and human settlements. Current inference methods typically rely on spatial interpolation based on the assumption of spatial continuity, which does not adequately address the complex variations present within regional spaces. In this paper, we present GeoHG, the first space-aware socioeconomic indicator inference method that utilizes a heterogeneous graph-based structure to represent geospace for non-continuous inference. Extensive experiments demonstrate the effectiveness of GeoHG in comparison to existing methods, achieving an $R^2$ score exceeding 0.8 under extreme data scarcity with a masked ratio of 95\%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GeoHG 社会经济指标 空间感知 非连续推理 区域样本
相关文章