cs.AI updates on arXiv.org 09月03日
KGX3:科研评价透明化模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出KGX3模型,旨在实现科研评价的透明化。通过场景映射和范式图构建,该模型可提供对研究论文Kuhnian阶段的分类,并确保分类流程的确定性。该系统已在多个语料库中验证,并在全球范围内运行,同时保护核心知识产权。

arXiv:2002.03531v2 Announce Type: replace Abstract: Despite rapid gains in scale, research evaluation still relies on opaque, lagging proxies. To serve the scientific community, we pursue transparency: reproducible, auditable epistemic classification useful for funding and policy. Here we formalize KGX3 as a scenario-based model for mapping Kuhnian stages from research papers, prove determinism of the classification pipeline, and define the epistemic manifold that yields paradigm maps. We report validation across recent corpora, operational complexity at global scale, and governance that preserves interpretability while protecting core IP. The system delivers early, actionable signals of drift, crisis, and shift unavailable to citation metrics or citations-anchored NLP. KGX3 is the latest iteration of a deterministic epistemic engine developed since 2019, originating as Soph.io (2020), advanced as iKuhn (2024), and field-tested through Preprint Watch in 2025.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

科研评价 透明化模型 KGX3 Kuhnian阶段 知识产权
相关文章