cs.AI updates on arXiv.org 09月03日
数据隐私与效用平衡的优化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型的数据集发布优化框架,旨在平衡数据隐私保护与数据效用,通过引入上下级优化任务,实现对抗性样本的生成和隐私保护。

arXiv:2509.02048v1 Announce Type: cross Abstract: Machine learning models require datasets for effective training, but directly sharing raw data poses significant privacy risk such as membership inference attacks (MIA). To mitigate the risk, privacy-preserving techniques such as data perturbation, generalization, and synthetic data generation are commonly utilized. However, these methods often degrade data accuracy, specificity, and diversity, limiting the performance of downstream tasks and thus reducing data utility. Therefore, striking an optimal balance between privacy preservation and data utility remains a critical challenge. To address this issue, we introduce a novel bilevel optimization framework for the publication of private datasets, where the upper-level task focuses on data utility and the lower-level task focuses on data privacy. In the upper-level task, a discriminator guides the generation process to ensure that perturbed latent variables are mapped to high-quality samples, maintaining fidelity for downstream tasks. In the lower-level task, our framework employs local extrinsic curvature on the data manifold as a quantitative measure of individual vulnerability to MIA, providing a geometric foundation for targeted privacy protection. By perturbing samples toward low-curvature regions, our method effectively suppresses distinctive feature combinations that are vulnerable to MIA. Through alternating optimization of both objectives, we achieve a synergistic balance between privacy and utility. Extensive experimental evaluations demonstrate that our method not only enhances resistance to MIA in downstream tasks but also surpasses existing methods in terms of sample quality and diversity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据隐私 数据效用 优化框架 隐私保护 机器学习
相关文章