cs.AI updates on arXiv.org 09月03日
VISP:深度神经网络自适应正则化方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出VISP方法,通过利用梯度波动性引导随机噪声注入,实现深度神经网络的自适应正则化。实验表明,VISP在MNIST、CIFAR-10和SVHN数据集上均优于基准模型和固定噪声模型,并揭示其对网络内部动态和特征表示的稳定性提升。

arXiv:2509.01903v1 Announce Type: cross Abstract: We propose VISP: Volatility Informed Stochastic Projection, an adaptive regularization method that leverages gradient volatility to guide stochastic noise injection in deep neural networks. Unlike conventional techniques that apply uniform noise or fixed dropout rates, VISP dynamically computes volatility from gradient statistics and uses it to scale a stochastic projection matrix. This mechanism selectively regularizes inputs and hidden nodes that exhibit higher gradient volatility while preserving stable representations, thereby mitigating overfitting. Extensive experiments on MNIST, CIFAR-10, and SVHN demonstrate that VISP consistently improves generalization performance over baseline models and fixed-noise alternatives. In addition, detailed analyses of the evolution of volatility, the spectral properties of the projection matrix, and activation distributions reveal that VISP not only stabilizes the internal dynamics of the network but also fosters a more robust feature representation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VISP 深度神经网络 正则化 梯度波动性 随机噪声注入
相关文章