cs.AI updates on arXiv.org 09月03日
非一致扩散模型在OFDM信道生成中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型扩散模型——非一致扩散模型,用于无线正交频分复用(OFDM)信道生成。通过引入元素级时间指标,提高局部误差变化的捕捉精度,从而在初始化偏差的情况下提升生成结果。特别关注MIMO-OFDM信道矩阵的恢复,并通过数值实验验证了该模型的有效性。

arXiv:2509.01641v1 Announce Type: cross Abstract: We propose a novel diffusion model, termed the non-identical diffusion model, and investigate its application to wireless orthogonal frequency division multiplexing (OFDM) channel generation. Unlike the standard diffusion model that uses a scalar-valued time index to represent the global noise level, we extend this notion to an element-wise time indicator to capture local error variations more accurately. Non-identical diffusion enables us to characterize the reliability of each element (e.g., subcarriers in OFDM) within the noisy input, leading to improved generation results when the initialization is biased. Specifically, we focus on the recovery of wireless multi-input multi-output (MIMO) OFDM channel matrices, where the initial channel estimates exhibit highly uneven reliability across elements due to the pilot scheme. Conventional time embeddings, which assume uniform noise progression, fail to capture such variability across pilot schemes and noise levels. We introduce a matrix that matches the input size to control element-wise noise progression. Following a similar diffusion procedure to existing methods, we show the correctness and effectiveness of the proposed non-identical diffusion scheme both theoretically and numerically. For MIMO-OFDM channel generation, we propose a dimension-wise time embedding strategy. We also develop and evaluate multiple training and generation methods and compare them through numerical experiments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

非一致扩散模型 OFDM信道生成 MIMO-OFDM 信道矩阵恢复 数值实验
相关文章