cs.AI updates on arXiv.org 09月03日
深度学习模型提升导管术
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种通过深度学习模型提升导管术的新方法。该方法利用视觉和触觉感知数据,通过端到端架构实现,提高了导管在X射线图像中的定位和压力估计的准确性。

arXiv:2509.01605v1 Announce Type: cross Abstract: Recently, the emergence of multitask deep learning models has enhanced catheterization procedures by providing tactile and visual perception data through an end-to-end architec- ture. This information is derived from a segmentation and force estimation head, which localizes the catheter in X-ray images and estimates the applied pressure based on its deflection within the image. These stereo vision architectures incorporate a CNN- based encoder-decoder that captures the dependencies between X-ray images from two viewpoints, enabling simultaneous 3D force estimation and stereo segmentation of the catheter. With these tasks in mind, this work approaches the problem from a new perspective. We propose a novel encoder-decoder Vision Transformer model that processes two input X-ray images as separate sequences. Given sequences of X-ray patches from two perspectives, the transformer captures long-range dependencies without the need to gradually expand the receptive field for either image. The embeddings generated by both the encoder and decoder are fed into two shared segmentation heads, while a regression head employs the fused information from the decoder for 3D force estimation. The proposed model is a stereo Vision Transformer capable of simultaneously segmenting the catheter from two angles while estimating the generated forces at its tip in 3D. This model has undergone extensive experiments on synthetic X-ray images with various noise levels and has been compared against state-of-the-art pure segmentation models, vision-based catheter force estimation methods, and a multitask catheter segmentation and force estimation approach. It outperforms existing models, setting a new state-of-the-art in both catheter segmentation and force estimation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 导管术 视觉感知 X射线图像 压力估计
相关文章