cs.AI updates on arXiv.org 09月03日
API图构建与工具代理性能提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了将API文档转化为结构化API图,以帮助工具代理识别和调用正确的API,并介绍了In-N-Out数据集,显著提升了工具检索和多工具查询生成的性能。

arXiv:2509.01560v1 Announce Type: cross Abstract: Tool agents -- LLM-based systems that interact with external APIs -- offer a way to execute real-world tasks. However, as tasks become increasingly complex, these agents struggle to identify and call the correct APIs in the proper order. To tackle this problem, we investigate converting API documentation into a structured API graph that captures API dependencies and leveraging it for multi-tool queries that require compositional API calls. To support this, we introduce In-N-Out, the first expert-annotated dataset of API graphs built from two real-world API benchmarks and their documentation. Using In-N-Out significantly improves performance on both tool retrieval and multi-tool query generation, nearly doubling that of LLMs using documentation alone. Moreover, graphs generated by models fine-tuned on In-N-Out close 90% of this gap, showing that our dataset helps models learn to comprehend API documentation and parameter relationships. Our findings highlight the promise of using explicit API graphs for tool agents and the utility of In-N-Out as a valuable resource. We will release the dataset and code publicly.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

API图 工具代理 性能提升 In-N-Out数据集 API文档
相关文章