cs.AI updates on arXiv.org 09月03日
因果影响识别与预测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新颖的生成方法识别因果影响并应用于预测任务,通过干预和反事实分析识别因果敏感特征,利用条件变分自动编码器识别因果影响并作为生成预测器,有效减少混淆偏差,并在大规模数据集上验证了其有效性。

arXiv:2509.01352v1 Announce Type: cross Abstract: In this work, we propose a novel generative method to identify the causal impact and apply it to prediction tasks. We conduct causal impact analysis using interventional and counterfactual perspectives. First, applying interventions, we identify features that have a causal influence on the predicted outcome, which we refer to as causally sensitive features, and second, applying counterfactuals, we evaluate how changes in the cause affect the effect. Our method exploits the Conditional Variational Autoencoder (CVAE) to identify the causal impact and serve as a generative predictor. We are able to reduce confounding bias by identifying causally sensitive features. We demonstrate the effectiveness of our method by recommending the most likely locations a user will visit next in their spatiotemporal trajectory influenced by the causal relationships among various features. Experiments on the large-scale GeoLife [Zheng et al., 2010] dataset and the benchmark Asia Bayesian network validate the ability of our method to identify causal impact and improve predictive performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果影响识别 预测任务 条件变分自动编码器 混淆偏差 GeoLife数据集
相关文章