cs.AI updates on arXiv.org 09月03日
改进降水预测的AT损失函数
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出一种基于QUBO公式的AT损失函数,以改进降水预测,并通过实验证明其优越性。

arXiv:2509.01348v1 Announce Type: cross Abstract: Accurate precipitation forecasting is becoming increasingly important in the context of climate change. In response, machine learning-based approaches have recently gained attention as an emerging alternative to traditional methods such as numerical weather prediction and climate models. Nonetheless, many recent approaches still rely on off-the-shelf loss functions, and even the more advanced ones merely involve optimization processes based on the critical success index (CSI). The problem, however, is that CSI may become ineffective during extended dry periods when precipitation remains below the threshold, rendering it less than ideal as a criterion for optimization. To address this limitation, we introduce a simple penalty expression and reinterpret it as a quadratic unconstrained binary optimization (QUBO) formulation. Ultimately, the resulting QUBO formulation is relaxed into a differentiable advanced torrential (AT) loss function through an approximation process. The proposed AT loss demonstrates its superiority through the Lipschitz constant, forecast performance evaluations, consistency experiments, and ablation studies with the operational model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

降水预测 机器学习 QUBO AT损失函数 气候变化
相关文章