cs.AI updates on arXiv.org 09月03日
LLMs语境段落演化对问答性能影响研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种框架,用于分析LLMs在语义相似度变化下的问答性能,发现LLMs在自然文本演化过程中表现下降,为LLMs语言理解能力带来挑战。

arXiv:2509.01093v1 Announce Type: cross Abstract: How does the natural evolution of context paragraphs affect question answering in generative Large Language Models (LLMs)? To investigate this, we propose a framework for curating naturally evolved, human-edited variants of reading passages from contemporary QA benchmarks and for analyzing LLM performance across a range of semantic similarity scores, which quantify how closely each variant aligns with content seen during pretraining. Using this framework, we evaluate six QA datasets and eight LLMs with publicly available training data. Our experiments reveal that LLM performance declines as reading passages naturally diverge from the versions encountered during pretraining-even when the question and all necessary information remains present at inference time. For instance, average model accuracy on BoolQ drops by over 30% from the highest to lowest similarity bins, with slopes exceeding 70 across several LLMs. These findings suggest that natural text evolution poses a significant challenge to the language understanding capabilities of LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 语义相似度 语言理解
相关文章