cs.AI updates on arXiv.org 09月03日
LLMs在伊斯兰遗产法推理能力评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了大型语言模型在伊斯兰遗产法,即'ilm al-mawarith'中的知识与推理能力。通过1000道多项选择题测试七种LLMs的表现,发现不同模型之间存在显著性能差异,并提出改进伊斯兰法律推理性能的方向。

arXiv:2509.01081v1 Announce Type: cross Abstract: This paper evaluates the knowledge and reasoning capabilities of Large Language Models in Islamic inheritance law, known as 'ilm al-mawarith. We assess the performance of seven LLMs using a benchmark of 1,000 multiple-choice questions covering diverse inheritance scenarios, designed to test models' ability to understand the inheritance context and compute the distribution of shares prescribed by Islamic jurisprudence. The results reveal a significant performance gap: o3 and Gemini 2.5 achieved accuracies above 90%, whereas ALLaM, Fanar, LLaMA, and Mistral scored below 50%. These disparities reflect important differences in reasoning ability and domain adaptation. We conduct a detailed error analysis to identify recurring failure patterns across models, including misunderstandings of inheritance scenarios, incorrect application of legal rules, and insufficient domain knowledge. Our findings highlight limitations in handling structured legal reasoning and suggest directions for improving performance in Islamic legal reasoning. Code: https://github.com/bouchekif/inheritance_evaluation

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 伊斯兰遗产法 推理能力 性能评估 法律推理
相关文章