cs.AI updates on arXiv.org 09月03日
新型框架助力糖尿病视网膜病变早期检测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合物理信息神经网络、混合特征融合网络和不确定性量化分类器的新型糖尿病视网膜病变检测框架,实现高准确性和可解释性,有望在资源有限的环境下提高诊断的准确性。

arXiv:2509.01072v1 Announce Type: cross Abstract: Diabetic retinopathy (DR) is a leading cause of blindness worldwide, necessitating early detection to prevent vision loss. Current automated DR detection systems often struggle with poor-quality images, lack interpretability, and insufficient integration of domain-specific knowledge. To address these challenges, we introduce a novel framework that integrates three innovative contributions: (1) Adaptive Retinal Image Enhancement Using Physics-Informed Neural Networks (PINNs): this technique dynamically enhances retinal images by incorporating physical constraints, improving the visibility of critical features such as microaneurysms, hemorrhages, and exudates; (2) Hybrid Feature Fusion Network (HFFN): by combining deep learning embeddings with handcrafted features, HFFN leverages both learned representations and domain-specific knowledge to enhance generalization and accuracy; (3) Multi-Stage Classifier with Uncertainty Quantification: this method breaks down the classification process into logical stages, providing interpretable predictions and confidence scores, thereby improving clinical trust. The proposed framework achieves an accuracy of 92.7%, a precision of 92.5%, a recall of 92.6%, an F1-score of 92.5%, an AUC of 97.8%, a mAP of 0.96, and an MCC of 0.85. Ophthalmologists rated the framework's predictions as highly clinically relevant (4.8/5), highlighting its alignment with real-world diagnostic needs. Qualitative analyses, including Grad-CAM visualizations and uncertainty heatmaps, further enhance the interpretability and trustworthiness of the system. The framework demonstrates robust performance across diverse conditions, including low-quality images, noisy data, and unseen datasets. These features make the proposed framework a promising tool for clinical adoption, enabling more accurate and reliable DR detection in resource-limited settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

糖尿病视网膜病变 早期检测 深度学习 图像增强 混合特征融合
相关文章