cs.AI updates on arXiv.org 09月03日
MEPT:高效自适应的流形映射框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的流形映射框架MEPT,通过集成多个提示专家来适应性地学习多变且非平稳的数据分布,在SuperGLUE上实现了显著的性能提升。

arXiv:2509.00996v1 Announce Type: cross Abstract: Considering deep neural networks as manifold mappers, the pretrain-then-fine-tune paradigm can be interpreted as a two-stage process: pretrain establishes a broad knowledge base, and fine-tune adjusts the model parameters to activate specific neural pathways to align with the target manifold. Although prior fine-tuning approaches demonstrate success, their rigid parameter space limits their ability to dynamically activate appropriate neural pathways, rendering them ill-equipped to adapt flexibly to the diverse and evolving data distributions. In light of this view, we propose a novel approach, Mixture of Expert Prompt Tuning (MEPT), as an effective and efficient manifold-mapping framework. MEPT leverages the Mixture of Experts architecture by integrating multiple prompt experts to adaptively learn diverse and non-stationary data distributions. Empirical evaluations demonstrate that MEPT outperforms several state-of-the-art parameter efficient baselines on SuperGLUE, achieving notable improvements in mean accuracy (e.g., 1.94%) while significantly reducing activated prompts by 79.25%. The effectiveness of MEPT is further supported by theoretical insights from manifold learning and validated through neural activation pathway visualization results. Our code is avaliable at https://github.com/runtsang/MEPT.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

流形映射 MEPT 神经网络 性能提升 自适应学习
相关文章