cs.AI updates on arXiv.org 09月03日
低资源语音命令识别器:高效与紧凑的解决方案
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种低资源语音命令识别器,结合能量型语音活动检测、优化MFCC流水线和LogNNet分类器。通过在8 kHz下采样Speech Commands数据集的四条命令进行评估,发现自适应分箱方法(64维特征向量)在准确性与紧凑性之间取得了最佳平衡。LogNNet分类器在独立于说话人的评估中达到92.04%的准确率,同时参数数量显著少于传统深度学习模型。在Arduino Nano 33 IoT硬件平台上验证了其实用性,实现了约90%的实时识别准确率,同时仅消耗18 KB RAM。

arXiv:2509.00862v1 Announce Type: cross Abstract: This paper presents a low-resource speech-command recognizer combining energy-based voice activity detection (VAD), an optimized Mel-Frequency Cepstral Coefficients (MFCC) pipeline, and the LogNNet reservoir-computing classifier. Using four commands from the Speech Commands da-taset downsampled to 8 kHz, we evaluate four MFCC aggregation schemes and find that adaptive binning (64-dimensional feature vector) offers the best accuracy-to-compactness trade-off. The LogNNet classifier with architecture 64:33:9:4 reaches 92.04% accuracy under speaker-independent evaluation, while requiring significantly fewer parameters than conventional deep learn-ing models. Hardware implementation on Arduino Nano 33 IoT (ARM Cor-tex-M0+, 48 MHz, 32 KB RAM) validates the practical feasibility, achieving ~90% real-time recognition accuracy while consuming only 18 KB RAM (55% utilization). The complete pipeline (VAD -> MFCC -> LogNNet) thus enables reliable on-device speech-command recognition under strict memory and compute limits, making it suitable for battery-powered IoT nodes, wire-less sensor networks, and hands-free control interfaces.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音命令识别 低资源 LogNNet分类器 MFCC 实时识别
相关文章