cs.AI updates on arXiv.org 09月03日
Token-Entropy Conformal预测:提升开放式语言生成的不确定性量化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Token-Entropy Conformal Prediction(TECP)框架,利用token级熵作为不确定性度量,并集成到分割符合预测(CP)流程中,以构建具有形式覆盖保证的预测集。TECP通过直接从采样生成的token熵结构中估计认知不确定性,并通过CP分位数校准不确定性阈值,确保可证明的错误控制。实验表明,TECP在六种大型语言模型和两个基准测试中,均实现了可靠的覆盖率和紧凑的预测集,优于现有自一致性不确定性量化方法。

arXiv:2509.00461v1 Announce Type: cross Abstract: Uncertainty quantification (UQ) for open-ended language generation remains a critical yet underexplored challenge, especially under black-box constraints where internal model signals are inaccessible. In this paper, we introduce Token-Entropy Conformal Prediction (TECP), a novel framework that leverages token-level entropy as a logit-free, reference-free uncertainty measure and integrates it into a split conformal prediction (CP) pipeline to construct prediction sets with formal coverage guarantees. Unlike existing approaches that rely on semantic consistency heuristics or white-box features, TECP directly estimates epistemic uncertainty from the token entropy structure of sampled generations and calibrates uncertainty thresholds via CP quantiles to ensure provable error control. Empirical evaluations across six large language models and two benchmarks (CoQA and TriviaQA) demonstrate that TECP consistently achieves reliable coverage and compact prediction sets, outperforming prior self-consistency-based UQ methods. Our method provides a principled and efficient solution for trustworthy generation in black-box LLM settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

不确定性量化 开放式语言生成 Token-Entropy Conformal Prediction 认知不确定性 大型语言模型
相关文章