cs.AI updates on arXiv.org 09月03日
SPO-VLM:视觉语言模型对抗攻击防御框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SPO-VLM的新型视觉语言模型对抗攻击防御框架,通过两阶段策略增强模型鲁棒性,提高对激活引导和偏好优化的安全防护,同时保持良好性能。

arXiv:2509.00373v1 Announce Type: cross Abstract: Vision Language Models (VLMs) have demonstrated impressive capabilities in integrating visual and textual information for understanding and reasoning, but remain highly vulnerable to adversarial attacks. While activation steering has emerged as a promising defence, existing approaches often rely on task-specific contrastive prompts to extract harmful directions, which exhibit suboptimal performance and can degrade visual grounding performance. To address these limitations, we propose \textit{Sequence-Level Preference Optimization} for VLM (\textit{SPO-VLM}), a novel two-stage defense framework that combines activation-level intervention with policy-level optimization to enhance model robustness. In \textit{Stage I}, we compute adaptive layer-specific steering vectors from diverse data sources, enabling generalized suppression of harmful behaviors during inference. In \textit{Stage II}, we refine these steering vectors through a sequence-level preference optimization process. This stage integrates automated toxicity assessment, as well as visual-consistency rewards based on caption-image alignment, to achieve safe and semantically grounded text generation. The two-stage structure of SPO-VLM balances efficiency and effectiveness by combining a lightweight mitigation foundation in Stage I with deeper policy refinement in Stage II. Extensive experiments shown SPO-VLM enhances safety against attacks via activation steering and preference optimization, while maintaining strong performance on benign tasks without compromising visual understanding capabilities. We will release our code, model weights, and evaluation toolkit to support reproducibility and future research. \textcolor{red}{Warning: This paper may contain examples of offensive or harmful text and images.}

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言模型 对抗攻击 防御框架 鲁棒性 SPO-VLM
相关文章