cs.AI updates on arXiv.org 09月03日
AQFusionNet:资源受限地区空气质量预测新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AQFusionNet,一种用于资源受限地区的空气质量指数预测的多模态深度学习框架,通过结合地面大气图像和污染物浓度数据,实现高精度和高效预测。

arXiv:2509.00353v1 Announce Type: cross Abstract: Air pollution monitoring in resource-constrained regions remains challenging due to sparse sensor deployment and limited infrastructure. This work introduces AQFusionNet, a multimodal deep learning framework for robust Air Quality Index (AQI) prediction. The framework integrates ground-level atmospheric imagery with pollutant concentration data using lightweight CNN backbones (MobileNetV2, ResNet18, EfficientNet-B0). Visual and sensor features are combined through semantically aligned embedding spaces, enabling accurate and efficient prediction. Experiments on more than 8,000 samples from India and Nepal demonstrate that AQFusionNet consistently outperforms unimodal baselines, achieving up to 92.02% classification accuracy and an RMSE of 7.70 with the EfficientNet-B0 backbone. The model delivers an 18.5% improvement over single-modality approaches while maintaining low computational overhead, making it suitable for deployment on edge devices. AQFusionNet provides a scalable and practical solution for AQI monitoring in infrastructure-limited environments, offering robust predictive capability even under partial sensor availability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

空气质量指数 多模态深度学习 资源受限地区 空气质量预测 AQFusionNet
相关文章