cs.AI updates on arXiv.org 09月03日
LLM ORDER BY操作符研究及优化设计
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LLM ORDER BY操作符作为逻辑抽象,并研究其在统一评估框架下的物理实现。通过实验发现,无单一方法在所有场景下均最优,效果取决于查询特性和数据。提出三种新设计:基于一致性的批量大小策略、成对排序的多数投票机制和适用于LLM的两路外部归并排序。实验表明,基于一致性的批量大小策略在确定基于值的方法的批量大小方面有效,多数投票机制在GPT-4o上持续增强成对比较,外部归并排序在数据集和模型间实现了高精度-效率权衡。同时,观察到计算成本与排序质量之间存在对数线性关系,为LLM驱动的数据系统的成本模型奠定了基础。

arXiv:2509.00303v1 Announce Type: cross Abstract: We present the LLM ORDER BY operator as a logical abstraction and study its physical implementations within a unified evaluation framework. Our experiments show that no single approach is universally optimal, with effectiveness depending on query characteristics and data. We introduce three new designs: an agreement-based batch-size policy, a majority voting mechanism for pairwise sorting, and a two-way external merge sort adapted for LLMs. With extensive experiments, our agreement-based procedure is effective at determining batch size for value-based methods, the majority-voting mechanism consistently strengthens pairwise comparisons on GPT-4o, and external merge sort achieves high accuracy-efficiency trade-offs across datasets and models. We further observe a log-linear scaling between compute cost and ordering quality, offering the first step toward principled cost models for LLM powered data systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM ORDER BY 排序算法 数据系统 成本模型 实验分析
相关文章