cs.AI updates on arXiv.org 09月03日
行星表面探索AI系统:ARTPS创新技术解析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为ARTPS的混合AI系统,用于行星表面的自主探索。该系统结合了深度估计、异常检测和可学习的好奇心评分,在火星车数据集上取得了优异的性能,并通过实验验证了其在目标优先级排序上的准确性。

arXiv:2509.00042v1 Announce Type: cross Abstract: We present ARTPS (Autonomous Rover Target Prioritization System), a novel hybrid AI system that combines depth estimation, anomaly detection, and learnable curiosity scoring for autonomous exploration of planetary surfaces. Our approach integrates monocular depth estimation using Vision Transformers with multi-component anomaly detection and a weighted curiosity score that balances known value, anomaly signals, depth variance, and surface roughness. The system achieves state-of-the-art performance with AUROC of 0.94, AUPRC of 0.89, and F1-Score of 0.87 on Mars rover datasets. We demonstrate significant improvements in target prioritization accuracy through ablation studies and provide comprehensive analysis of component contributions. The hybrid fusion approach reduces false positives by 23% while maintaining high detection sensitivity across diverse terrain types.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI系统 行星探索 深度估计 异常检测 好奇心评分
相关文章