cs.AI updates on arXiv.org 09月03日
LLM辅助文献综述自动化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于声明式提示优化的LLM辅助文献综述自动化框架,通过将任务声明、测试套件和自动提示调整嵌入到可重复的文献综述工作流程中,提升文献综述的可靠性和可复现性。

arXiv:2509.00038v1 Announce Type: cross Abstract: Large language models (LLMs) offer significant potential to accelerate systematic literature reviews (SLRs), yet current approaches often rely on brittle, manually crafted prompts that compromise reliability and reproducibility. This fragility undermines scientific confidence in LLM-assisted evidence synthesis. In response, this work adapts recent advances in declarative prompt optimisation, developed for general-purpose LLM applications, and demonstrates their applicability to the domain of SLR automation. This research proposes a structured, domain-specific framework that embeds task declarations, test suites, and automated prompt tuning into a reproducible SLR workflow. These emerging methods are translated into a concrete blueprint with working code examples, enabling researchers to construct verifiable LLM pipelines that align with established principles of transparency and rigour in evidence synthesis. This is a novel application of such approaches to SLR pipelines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 文献综述 自动化框架 声明式提示优化 透明性
相关文章