cs.AI updates on arXiv.org 09月03日
基于深度学习的音乐视频自动生成研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出两种基于深度学习的音乐视频自动生成方法,通过分析音频内容生成视频,并通过用户评价验证其故事叙述、视觉连贯性和情感匹配能力。

arXiv:2509.00029v1 Announce Type: cross Abstract: Conventional music visualisation systems rely on handcrafted ad hoc transformations of shapes and colours that offer only limited expressiveness. We propose two novel pipelines for automatically generating music videos from any user-specified, vocal or instrumental song using off-the-shelf deep learning models. Inspired by the manual workflows of music video producers, we experiment on how well latent feature-based techniques can analyse audio to detect musical qualities, such as emotional cues and instrumental patterns, and distil them into textual scene descriptions using a language model. Next, we employ a generative model to produce the corresponding video clips. To assess the generated videos, we identify several critical aspects and design and conduct a preliminary user evaluation that demonstrates storytelling potential, visual coherency and emotional alignment with the music. Our findings underscore the potential of latent feature techniques and deep generative models to expand music visualisation beyond traditional approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 音乐视频 自动生成 情感分析 视觉连贯性
相关文章