cs.AI updates on arXiv.org 09月03日
LLM在生物医学数据中的不确定性处理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对查询条件多表摘要的不确定性感知代理,通过检索不确定性和摘要不确定性两种信号,提高LLM在生物医学数据环境中的可靠性。

arXiv:2509.02401v1 Announce Type: new Abstract: Large language model (LLM) agents are increasingly deployed in structured biomedical data environments, yet they often produce fluent but overconfident outputs when reasoning over complex multi-table data. We introduce an uncertainty-aware agent for query-conditioned multi-table summarization that leverages two complementary signals: (i) retrieval uncertainty--entropy over multiple table-selection rollouts--and (ii) summary uncertainty--combining self-consistency and perplexity. Summary uncertainty is incorporated into reinforcement learning (RL) with Group Relative Policy Optimization (GRPO), while both retrieval and summary uncertainty guide inference-time filtering and support the construction of higher-quality synthetic datasets. On multi-omics benchmarks, our approach improves factuality and calibration, nearly tripling correct and useful claims per summary (3.0(\rightarrow)8.4 internal; 3.6(\rightarrow)9.9 cancer multi-omics) and substantially improving downstream survival prediction (C-index 0.32(\rightarrow)0.63). These results demonstrate that uncertainty can serve as a control signal--enabling agents to abstain, communicate confidence, and become more reliable tools for complex structured-data environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 生物医学数据 不确定性 多表摘要
相关文章