cs.AI updates on arXiv.org 09月03日
LLMs在法律领域的应用与挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在法律领域的应用,提出了结构化提示方法以解决可靠性问题,并分析了现有自动评估指标的局限性。

arXiv:2509.02241v1 Announce Type: new Abstract: The rise of Large Language Models (LLMs) has had a profoundly transformative effect on a number of fields and domains. However, their uptake in Law has proven more challenging due to the important issues of reliability and transparency. In this study, we present a structured prompting methodology as a viable alternative to the often expensive fine-tuning, with the capability of tacking long legal documents from the CUAD dataset on the task of information retrieval. Each document is first split into chunks via a system of chunking and augmentation, addressing the long document problem. Then, alongside an engineered prompt, the input is fed into QWEN-2 to produce a set of answers for each question. Finally, we tackle the resulting candidate selection problem with the introduction of the Distribution-based Localisation and Inverse Cardinality Weighting heuristics. This approach leverages a general purpose model to promote long term scalability, prompt engineering to increase reliability and the two heuristic strategies to reduce the impact of the black box effect. Whilst our model performs up to 9\% better than the previously presented method, reaching state-of-the-art performance, it also highlights the limiting factor of current automatic evaluation metrics for question answering, serving as a call to action for future research. However, the chief aim of this work is to underscore the potential of structured prompt engineering as a useful, yet under-explored, tool in ensuring accountability and responsibility of AI in the legal domain, and beyond.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 法律领域 可靠性 结构化提示 自动评估
相关文章