cs.AI updates on arXiv.org 09月03日
AI加速科学发现:挑战与验证机制
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了人工智能在科学发现中的应用及其带来的挑战,分析了AI如何重塑传统科学发现方法,并提出了数据驱动、知识感知神经网络架构、符号推理框架和LLM代理等主要方法,强调验证机制在AI辅助发现中的重要性。

arXiv:2509.01398v1 Announce Type: new Abstract: Artificial intelligence (AI) is transforming the practice of science. Machine learning and large language models (LLMs) can generate hypotheses at a scale and speed far exceeding traditional methods, offering the potential to accelerate discovery across diverse fields. However, the abundance of hypotheses introduces a critical challenge: without scalable and reliable mechanisms for verification, scientific progress risks being hindered rather than being advanced. In this article, we trace the historical development of scientific discovery, examine how AI is reshaping established practices for scientific discovery, and review the principal approaches, ranging from data-driven methods and knowledge-aware neural architectures to symbolic reasoning frameworks and LLM agents. While these systems can uncover patterns and propose candidate laws, their scientific value ultimately depends on rigorous and transparent verification, which we argue must be the cornerstone of AI-assisted discovery.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 科学发现 验证机制 数据驱动 知识感知
相关文章