cs.AI updates on arXiv.org 09月03日
LLM假设搜索在规则归纳中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过对比LLM假设搜索框架与直接程序生成方法在少量示例规则归纳任务中的表现,发现LLM假设搜索在性能上可与人类相当,而直接程序生成方法明显落后。通过对假设生成的错误分析,揭示了关键瓶颈并提出了程序归纳方法改进的方向。

arXiv:2509.01016v1 Announce Type: new Abstract: Inductive reasoning enables humans to infer abstract rules from limited examples and apply them to novel situations. In this work, we compare an LLM-based hypothesis search framework with direct program generation approaches on few-shot rule induction tasks. Our findings show that hypothesis search achieves performance comparable to humans, while direct program generation falls notably behind. An error analysis reveals key bottlenecks in hypothesis generation and suggests directions for advancing program induction methods. Overall, this paper underscores the potential of LLM-based hypothesis search for modeling inductive reasoning and the challenges in building more efficient systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 规则归纳 假设搜索 程序生成 归纳推理
相关文章