cs.AI updates on arXiv.org 09月03日
神经MCCFR算法规模依赖性分析及自适应框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了神经MCCFR算法在不同规模游戏中的表现,提出了一种自适应框架,并验证了其在不同规模游戏中的有效性。

arXiv:2509.00923v1 Announce Type: new Abstract: Monte Carlo Counterfactual Regret Minimization (MCCFR) has emerged as a cornerstone algorithm for solving extensive-form games, but its integration with deep neural networks introduces scale-dependent challenges that manifest differently across game complexities. This paper presents a comprehensive analysis of how neural MCCFR component effectiveness varies with game scale and proposes an adaptive framework for selective component deployment. We identify that theoretical risks such as nonstationary target distribution shifts, action support collapse, variance explosion, and warm-starting bias have scale-dependent manifestation patterns, requiring different mitigation strategies for small versus large games. Our proposed Robust Deep MCCFR framework incorporates target networks with delayed updates, uniform exploration mixing, variance-aware training objectives, and comprehensive diagnostic monitoring. Through systematic ablation studies on Kuhn and Leduc Poker, we demonstrate scale-dependent component effectiveness and identify critical component interactions. The best configuration achieves final exploitability of 0.0628 on Kuhn Poker, representing a 60% improvement over the classical framework (0.156). On the more complex Leduc Poker domain, selective component usage achieves exploitability of 0.2386, a 23.5% improvement over the classical framework (0.3703) and highlighting the importance of careful component selection over comprehensive mitigation. Our contributions include: (1) a formal theoretical analysis of risks in neural MCCFR, (2) a principled mitigation framework with convergence guarantees, (3) comprehensive multi-scale experimental validation revealing scale-dependent component interactions, and (4) practical guidelines for deployment in larger games.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经MCCFR 规模依赖性 自适应框架 游戏规模 深度学习
相关文章