cs.AI updates on arXiv.org 09月03日
智能代理数据可视化流程自动化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种轻量级多智能体系统,用于自动化数据分析工作流程,从数据探索到生成视觉叙事。系统采用混合架构,将关键逻辑从LLM外部化,以提高透明度和可靠性,支持可持续的人机协作。

arXiv:2509.00481v1 Announce Type: new Abstract: Recent advancements in the field of AI agents have impacted the way we work, enabling greater automation and collaboration between humans and agents. In the data visualization field, multi-agent systems can be useful for employing agents throughout the entire data-to-communication pipeline. We present a lightweight multi-agent system that automates the data analysis workflow, from data exploration to generating coherent visual narratives for insight communication. Our approach combines a hybrid multi-agent architecture with deterministic components, strategically externalizing critical logic from LLMs to improve transparency and reliability. The system delivers granular, modular outputs that enable surgical modifications without full regeneration, supporting sustainable human-AI collaboration. We evaluated our system across 4 diverse datasets, demonstrating strong generalizability, narrative quality, and computational efficiency with minimal dependencies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能代理 数据可视化 自动化工作流程 人机协作 混合架构
相关文章