cs.AI updates on arXiv.org 08月22日
Privacy Preserving Inference of Personalized Content for Out of Matrix Users
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DeepNaniNet,一种基于深度学习的推荐系统框架,有效解决数据稀疏、冷启动用户和物品、隐私限制等问题,通过结合用户-物品交互、物品-物品关系和BERT生成的文本嵌入,实现冷启动推荐,并在AnimeULike数据集上取得优异表现。

arXiv:2508.14905v1 Announce Type: cross Abstract: Recommender systems for niche and dynamic communities face persistent challenges from data sparsity, cold start users and items, and privacy constraints. Traditional collaborative filtering and content-based approaches underperform in these settings, either requiring invasive user data or failing when preference histories are absent. We present DeepNaniNet, a deep neural recommendation framework that addresses these challenges through an inductive graph-based architecture combining user-item interactions, item-item relations, and rich textual review embeddings derived from BERT. Our design enables cold start recommendations without profile mining, using a novel "content basket" user representation and an autoencoder-based generalization strategy for unseen users. We introduce AnimeULike, a new dataset of 10,000 anime titles and 13,000 users, to evaluate performance in realistic scenarios with high proportions of guest or low-activity users. DeepNaniNet achieves state-of-the-art cold start results on the CiteULike benchmark, matches DropoutNet in user recall without performance degradation for out-of-matrix users, and outperforms Weighted Matrix Factorization (WMF) and DropoutNet on AnimeULike warm start by up to 7x and 1.5x in Recall@100, respectively. Our findings demonstrate that DeepNaniNet delivers high-quality, privacy-preserving recommendations in data-sparse, cold start-heavy environments while effectively integrating heterogeneous content sources.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 推荐系统 冷启动 数据稀疏 AnimeULike
相关文章