cs.AI updates on arXiv.org 08月21日
SuryaBench: Benchmark Dataset for Advancing Machine Learning in Heliophysics and Space Weather Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一组由NASA SDO提供的高分辨率太阳物理数据集,旨在促进机器学习在太阳物理和空间天气预报中的应用,包括预处理和辅助数据集,以支持关键空间天气预报任务。

arXiv:2508.14107v1 Announce Type: cross Abstract: This paper introduces a high resolution, machine learning-ready heliophysics dataset derived from NASA's Solar Dynamics Observatory (SDO), specifically designed to advance machine learning (ML) applications in solar physics and space weather forecasting. The dataset includes processed imagery from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), spanning a solar cycle from May 2010 to July 2024. To ensure suitability for ML tasks, the data has been preprocessed, including correction of spacecraft roll angles, orbital adjustments, exposure normalization, and degradation compensation. We also provide auxiliary application benchmark datasets complementing the core SDO dataset. These provide benchmark applications for central heliophysics and space weather tasks such as active region segmentation, active region emergence forecasting, coronal field extrapolation, solar flare prediction, solar EUV spectra prediction, and solar wind speed estimation. By establishing a unified, standardized data collection, this dataset aims to facilitate benchmarking, enhance reproducibility, and accelerate the development of AI-driven models for critical space weather prediction tasks, bridging gaps between solar physics, machine learning, and operational forecasting.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

太阳物理 空间天气预报 机器学习 数据集 SDO
相关文章