arXiv:2508.14106v1 Announce Type: cross Abstract: Live cell culture is crucial in biomedical studies for analyzing cell properties and dynamics in vitro. This study focuses on segmenting unstained live cells imaged with bright-field microscopy. While many segmentation approaches exist for microscopic images, none consistently address the challenges of bright-field live-cell imaging with high throughput, where temporal phenotype changes, low contrast, noise, and motion-induced blur from cellular movement remain major obstacles. We developed a low-cost CNN-based pipeline incorporating comparative analysis of frozen encoders within a unified U-Net architecture enhanced with attention mechanisms, instance-aware systems, adaptive loss functions, hard instance retraining, dynamic learning rates, progressive mechanisms to mitigate overfitting, and an ensemble technique. The model was validated on a public dataset featuring diverse live cell variants, showing consistent competitiveness with state-of-the-art methods, achieving 93% test accuracy and an average F1-score of 89% (std. 0.07) on low-contrast, noisy, and blurry images. Notably, the model was trained primarily on bright-field images with limited exposure to phase-contrast microscopy (
