cs.AI updates on arXiv.org 08月21日
MAHL: Multi-Agent LLM-Guided Hierarchical Chiplet Design with Adaptive Debugging
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于LLM的芯片设计框架MAHL,解决高维芯片设计难题,提高芯片设计效率和性能。

arXiv:2508.14053v1 Announce Type: cross Abstract: As program workloads (e.g., AI) increase in size and algorithmic complexity, the primary challenge lies in their high dimensionality, encompassing computing cores, array sizes, and memory hierarchies. To overcome these obstacles, innovative approaches are required. Agile chip design has already benefited from machine learning integration at various stages, including logic synthesis, placement, and routing. With Large Language Models (LLMs) recently demonstrating impressive proficiency in Hardware Description Language (HDL) generation, it is promising to extend their abilities to 2.5D integration, an advanced technique that saves area overhead and development costs. However, LLM-driven chiplet design faces challenges such as flatten design, high validation cost and imprecise parameter optimization, which limit its chiplet design capability. To address this, we propose MAHL, a hierarchical LLM-based chiplet design generation framework that features six agents which collaboratively enable AI algorithm-hardware mapping, including hierarchical description generation, retrieval-augmented code generation, diverseflow-based validation, and multi-granularity design space exploration. These components together enhance the efficient generation of chiplet design with optimized Power, Performance and Area (PPA). Experiments show that MAHL not only significantly improves the generation accuracy of simple RTL design, but also increases the generation accuracy of real-world chiplet design, evaluated by Pass@5, from 0 to 0.72 compared to conventional LLMs under the best-case scenario. Compared to state-of-the-art CLARIE (expert-based), MAHL achieves comparable or even superior PPA results under certain optimization objectives.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

芯片设计 机器学习 LLM 芯片性能
相关文章