cs.AI updates on arXiv.org 08月20日
Bounding Causal Effects and Counterfactuals
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过对比多种因果场景下的部分识别算法,提出了一种熵界方法的扩展,并构建了评估框架,以提高因果推断的精确性和实用性。

arXiv:2508.13607v1 Announce Type: cross Abstract: Causal inference often hinges on strong assumptions - such as no unmeasured confounding or perfect compliance - that are rarely satisfied in practice. Partial identification offers a principled alternative: instead of relying on unverifiable assumptions to estimate causal effects precisely, it derives bounds that reflect the uncertainty inherent in the data. Despite its theoretical appeal, partial identification remains underutilized in applied work, in part due to the fragmented nature of existing methods and the lack of practical guidance. This thesis addresses these challenges by systematically comparing a diverse set of bounding algorithms across multiple causal scenarios. We implement, extend, and unify state-of-the-art methods - including symbolic, optimization-based, and information-theoretic approaches - within a common evaluation framework. In particular, we propose an extension of a recently introduced entropy-bounded method, making it applicable to counterfactual queries such as the Probability of Necessity and Sufficiency (PNS). Our empirical study spans thousands of randomized simulations involving both discrete and continuous data-generating processes. We assess each method in terms of bound tightness, computational efficiency, and robustness to assumption violations. To support practitioners, we distill our findings into a practical decision tree for algorithm selection and train a machine learning model to predict the best-performing method based on observable data characteristics. All implementations are released as part of an open-source Python package, CausalBoundingEngine, which enables users to apply and compare bounding methods through a unified interface.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果推断 部分识别 算法比较 熵界方法 Python包
相关文章