cs.AI updates on arXiv.org 08月20日
Who Gets the Mic? Investigating Gender Bias in the Speaker Assignment of a Speech-LLM
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究提出利用说话人分配作为分析工具来探究语音LLMs的性别偏见,以Bark TTS模型为例,分析其默认说话人分配,发现性别意识但无系统性偏见。

arXiv:2508.13603v1 Announce Type: cross Abstract: Similar to text-based Large Language Models (LLMs), Speech-LLMs exhibit emergent abilities and context awareness. However, whether these similarities extend to gender bias remains an open question. This study proposes a methodology leveraging speaker assignment as an analytic tool for bias investigation. Unlike text-based models, which encode gendered associations implicitly, Speech-LLMs must produce a gendered voice, making speaker selection an explicit bias cue. We evaluate Bark, a Text-to-Speech (TTS) model, analyzing its default speaker assignments for textual prompts. If Bark's speaker selection systematically aligns with gendered associations, it may reveal patterns in its training data or model design. To test this, we construct two datasets: (i) Professions, containing gender-stereotyped occupations, and (ii) Gender-Colored Words, featuring gendered connotations. While Bark does not exhibit systematic bias, it demonstrates gender awareness and has some gender inclinations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音LLMs 性别偏见 说话人分配 TTS模型 性别意识
相关文章