cs.AI updates on arXiv.org 08月20日
Evaluating Identity Leakage in Speaker De-Identification Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种新的语音去身份识别基准,并指出当前技术普遍存在身份信息泄露风险,最高效系统表现仅略优于随机猜测,最低效系统达到45%的命中率,揭示当前语音去身份识别技术存在的隐私问题。

arXiv:2508.14012v1 Announce Type: cross Abstract: Speaker de-identification aims to conceal a speaker's identity while preserving intelligibility of the underlying speech. We introduce a benchmark that quantifies residual identity leakage with three complementary error rates: equal error rate, cumulative match characteristic hit rate, and embedding-space similarity measured via canonical correlation analysis and Procrustes analysis. Evaluation results reveal that all state-of-the-art speaker de-identification systems leak identity information. The highest performing system in our evaluation performs only slightly better than random guessing, while the lowest performing system achieves a 45% hit rate within the top 50 candidates based on CMC. These findings highlight persistent privacy risks in current speaker de-identification technologies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音去身份识别 隐私风险 技术评估
相关文章