cs.AI updates on arXiv.org 08月20日
Prompt Orchestration Markup Language
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了POML,一种用于大型语言模型(LLM)的prompt编排标记语言,旨在解决当前prompt设计中的挑战,包括结构、数据集成、格式敏感性和工具等问题。

arXiv:2508.13948v1 Announce Type: cross Abstract: Large Language Models (LLMs) require sophisticated prompting, yet current practices face challenges in structure, data integration, format sensitivity, and tooling. Existing methods lack comprehensive solutions for organizing complex prompts involving diverse data types (documents, tables, images) or managing presentation variations systematically. To address these gaps, we introduce POML (Prompt Orchestration Markup Language). POML employs component-based markup for logical structure (roles, tasks, examples), specialized tags for seamless data integration, and a CSS-like styling system to decouple content from presentation, reducing formatting sensitivity. It includes templating for dynamic prompts and a comprehensive developer toolkit (IDE support, SDKs) to improve version control and collaboration. We validate POML through two case studies demonstrating its impact on complex application integration (PomLink) and accuracy performance (TableQA), as well as a user study assessing its effectiveness in real-world development scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

POML LLM prompt设计
相关文章