cs.AI updates on arXiv.org 08月20日
Assessing Trustworthiness of AI Training Dataset using Subjective Logic -- A Use Case on Bias
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出首个评估AI训练数据集可信度的框架,基于主观逻辑,支持不确定性量化,以交通标志识别数据集为例验证其有效性和鲁棒性。

arXiv:2508.13813v1 Announce Type: cross Abstract: As AI systems increasingly rely on training data, assessing dataset trustworthiness has become critical, particularly for properties like fairness or bias that emerge at the dataset level. Prior work has used Subjective Logic to assess trustworthiness of individual data, but not to evaluate trustworthiness properties that emerge only at the level of the dataset as a whole. This paper introduces the first formal framework for assessing the trustworthiness of AI training datasets, enabling uncertainty-aware evaluations of global properties such as bias. Built on Subjective Logic, our approach supports trust propositions and quantifies uncertainty in scenarios where evidence is incomplete, distributed, and/or conflicting. We instantiate this framework on the trustworthiness property of bias, and we experimentally evaluate it based on a traffic sign recognition dataset. The results demonstrate that our method captures class imbalance and remains interpretable and robust in both centralized and federated contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI数据集 可信度评估 主观逻辑 交通标志识别 不确定性量化
相关文章