cs.AI updates on arXiv.org 08月20日
PreSem-Surf: RGB-D Surface Reconstruction with Progressive Semantic Modeling and SG-MLP Pre-Rendering Mechanism
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PreSem-Surf,一种基于NeRF框架的优化方法,可快速从RGB-D序列中重建高质量场景表面。该方法结合RGB、深度和语义信息提升重建性能,并通过SG-MLP和PR-MLP采样结构以及渐进式语义建模,实现早期信息捕捉和噪声区分,实验结果表明其在多个指标上均取得优异成绩。

arXiv:2508.13228v1 Announce Type: cross Abstract: This paper proposes PreSem-Surf, an optimized method based on the Neural Radiance Field (NeRF) framework, capable of reconstructing high-quality scene surfaces from RGB-D sequences in a short time. The method integrates RGB, depth, and semantic information to improve reconstruction performance. Specifically, a novel SG-MLP sampling structure combined with PR-MLP (Preconditioning Multilayer Perceptron) is introduced for voxel pre-rendering, allowing the model to capture scene-related information earlier and better distinguish noise from local details. Furthermore, progressive semantic modeling is adopted to extract semantic information at increasing levels of precision, reducing training time while enhancing scene understanding. Experiments on seven synthetic scenes with six evaluation metrics show that PreSem-Surf achieves the best performance in C-L1, F-score, and IoU, while maintaining competitive results in NC, Accuracy, and Completeness, demonstrating its effectiveness and practical applicability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Neural Radiance Field 场景重建 RGB-D序列 PreSem-Surf
相关文章