cs.AI updates on arXiv.org 08月20日
MIRAGE: Towards AI-Generated Image Detection in the Wild
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种针对AI生成图像(AIGI)检测的基准测试Mirage及其改进模型Mirage-R1,旨在应对真实场景下AIGI检测的挑战。

arXiv:2508.13223v1 Announce Type: cross Abstract: The spreading of AI-generated images (AIGI), driven by advances in generative AI, poses a significant threat to information security and public trust. Existing AIGI detectors, while effective against images in clean laboratory settings, fail to generalize to in-the-wild scenarios. These real-world images are noisy, varying from ``obviously fake" images to realistic ones derived from multiple generative models and further edited for quality control. We address in-the-wild AIGI detection in this paper. We introduce Mirage, a challenging benchmark designed to emulate the complexity of in-the-wild AIGI. Mirage is constructed from two sources: (1) a large corpus of Internet-sourced AIGI verified by human experts, and (2) a synthesized dataset created through the collaboration between multiple expert generators, closely simulating the realistic AIGI in the wild. Building on this benchmark, we propose Mirage-R1, a vision-language model with heuristic-to-analytic reasoning, a reflective reasoning mechanism for AIGI detection. Mirage-R1 is trained in two stages: a supervised-fine-tuning cold start, followed by a reinforcement learning stage. By further adopting an inference-time adaptive thinking strategy, Mirage-R1 is able to provide either a quick judgment or a more robust and accurate conclusion, effectively balancing inference speed and performance. Extensive experiments show that our model leads state-of-the-art detectors by 5% and 10% on Mirage and the public benchmark, respectively. The benchmark and code will be made publicly available.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI生成图像 信息安全 模型检测
相关文章